
Designing Hardware that Supports Cycle-Accurate Deterministic Replay

Brian Greskamp, Smruti R. Sarangi, and Josep Torrellas
Department of Computer Science, University of Illinois

http://iacoma.cs.uiuc.edu

Abstract

Most computer hardware today isnondeterministic, meaning
that two executions of a program will not be cycle-for-cycle identi-
cal at the microarchitectural level even if they start from the same
microarchitectural state. Due to uninitialized state elements, I/O,
and timing variations on high-speed buses, the microarchitectural
states of the two executions will evolve differently.

Such nondeterminism complicates system verification and
makes hardware faults detected during bringup more difficult to re-
produce and analyze. Consequently, we believe that board-level
computer hardware should be designed in a way that supports
cycle-accurate deterministic replay. In this paper, we outline the
hardware required to provide this capability. We argue that the re-
sulting hardware complexity is minimal, providing a net savings in
bringup time and cost. We also show that potential applications of
deterministic hardware extend far beyond hardware verification.

1. Introduction and Motivation

We propose the Cycle-Accurate Deterministic REplay
(CADRE) architecture, which cost-effectively makes a board-level
computer cycle-deterministic — including processors, buses,
memory, chipset, and I/O devices. CADRE uses checkpoints, logs,
and certain hardware extensions to enable replayed executions
that match the microarchitectural state of the original execution
cycle-for-cycle. For example, assume that one of the processors in
the computer observes a bus signal transitionA at internal cycle
a and initiates an ALU operationB at cycleb. These events will
recur at exactly the same internal cycles during the re-execution.
Further, the microarchitectural states of the multiple processors,
memory controllers, and other components will evolve exactly as
they did during the original execution.

Cycle-accurate determinism has many applications, but one of
the most obvious is in system bringup — the verification phase
when engineers begin running programs on first silicon. Since the
real processor is so much faster than the simulators used in earlier
verification phases, longer and more detailed tests, such as boot-
ing a full operating system, can finally be executed. The bringup
tests quickly reveal many previously unknown bugs, which must be
characterized. The characterization process typically begins with
finding a way to reliably reproduce an error. The engineer can then
employ “iterative debugging” — replaying the error and examin-
ing system state before and after to gain a full understanding of
the problem. With typical hardware, finding a test that reliably re-
produces the error is difficult or impossible, but with CADRE, it

is trivial. With CADRE, an engineer can replay a failing test over
and over, with the assurance that at each cycle, the signal and state
transitions will exactly match those of the original execution. He
can then stop the machine at different points and examine the inter-
nal state through a test access port or read out the complete system
state at any point and transfer it to an RTL simulator for detailed
analysis.

Deterministic hardware is also easier to test than nondeterminis-
tic hardware. Already, automatic testers are encountering problems
with nondeterminism [5]. These testers operate by presenting test
vectors at the chip’s input pins and observing the response vectors
on the output pins. In a nondeterministic system, response vectors
may not arrive at the tester at the expected time, or even in the ex-
pected order. In extreme cases, the data in the response vectors
could differ from the expected values. Cycle-accurate deterministic
hardware does not present these problems.

CADRE is not just for verification and test; it can be deployed in
the field, providing hardware vendors with a powerful tool to debug
customer-site failures. After the customer identifies what he be-
lieves to be a hardware error, he could send the vendor a checkpoint
preceding the crash. The vendor would then be able to reproduce
the fault exactly using in-house hardware and simulators. The idea
is similar to the current use of software crash feedback agents that
help software developers identify bugs in deployed software.

Cycle determinism also has less obvious applications. For ex-
ample, a cycle-deterministic system is easier to incorporate into
ann-way modular redundancy system. Traditional NMR systems,
such as HP’s NonStop server [2], require custom buffering and syn-
chronization logic between the processors and voters because each
processor may slowly slip behind or ahead of the others. Cycle-
deterministic components do not require such compensation logic
in NMR configurations, as cycle determinism ensures that as long
as the components have the same inputs, they will continue in lock
step.

Finally, hardware deterministic replay subsumes previous pro-
posals for software determinism to debug parallel programs [11]. In
a cycle-accurate deterministic system, the interleaving of replayed
memory accesses is guaranteed to match the original, since all ac-
cess occur at exactly the same cycle as during the original execu-
tion. Furthermore, as we will show later, interrupts and I/O events
will also recur exactly where they should. One issue with this ap-
proach is that special measures are needed to allow a debugger to
run on the target machine without interfering with hardware de-
terminism during replay. A solution to this problem is to run the
debugger on another machine attached to the target’s front side bus
or test access port.



2. Sources of Nondeterminism
A system supporting deterministic replay must have two key

properties: (1) A deterministic execution interval must begin at cy-
cle 0 with each state-holding element initialized to a known state.
(2) A component must receive a signal at thenth edge of its local
clock during replay iff it received the same signal at thenth edge
during the original execution. The first condition is the base case,
requiring that the original and replay executions start at exactly the
same state, and the second is the inductive step, ensuring that they
experience the same state transitions at the same cycles.

All nondeterminism is then traceable to one of two causes: (1)
incomplete initialization, in which some state-holding elements are
in an incorrect or unknown state at the start of replay, or (2) changes
in the arrival times of signals, possibly due to environmental factors.
Below, we discuss the two causes as they apply to each component
of the system.

CPUs Modern processors contain millions of bits of state con-
tained in registers, pipeline latches, SRAMs, and counters. Some
state bits, like those in the branch predictor tables, have no
architecturally-visible effect. Consequently, processors usually do
not provide any ISA-level means of resetting them, violating con-
dition 1. Additionally, dynamic power and temperature manage-
ment techniques such as clock duty cycle modulation and voltage-
frequency scaling (DVFS) are dependent on the environment (die
temperature). As a result, the timing of power and temperature
events is uncertain and condition 2 is violated.

Memory Systems The memory controller is the component re-
sponsible for scheduling memory read, write, refresh, and scrub-
bing operations. The Itanium-2 verification engineers [4] reported
that the memory refresh and scrubbing operations are a source of
nondeterminism because the scrubber and refresh walkers will be
working on different lines during the re-execution than in the origi-
nal. Therefore, scrubs and refreshes line up with the program’s read
and write accesses differently during replay. Due to contention, the
timing of all memory operations will change.

I/O and Interrupts The timing of I/O operations and interrupts is
notoriously unpredictable. For example, hard disks have mechani-
cal components that introduce non-deterministic seek times and ro-
tational delays. The timing of events from human-interface devices
and network interfaces is equally unpredictable.

Buses The buses that cross clock domains in a computer, for ex-
ample as they connect different chips, are a major source of non-
determinism. These buses are often source-synchronous [1], which
means that the transmitter generates and transmits a clock signal
that travels with the data to the receiver. One popular example is
HyperTransport [3]. In these buses, receiving a message occurs in
two steps (Figure 1). First, the rising edge of the transmitter clock
signal latches the data into a holding queue in the bus interface of
the receiver. We refer to this event as thearrival of the message.
Some time later, normally on the next rising edge of the receiver’s
core clock, the receiver removes the data from the queue and sub-
mits it for processing. We refer to this event as theprocessingof
the message.

Unfortunately, the exact arrival time is nondeterministic because
all clock and data pulses that traverse the bus are affected by phys-
ical and electrical processes such as temperature variations, volt-
age variations, channel cross talk, and inter-symbol interference

Data

Receiver
Core

Core

Bus Interf.

Clock

Holding Queue
Transmitter

Data

Fr
om

T
ra

ns
m

itt
er

Clock

Processing
Arrival

Figure 1. Arrival and processing of a message at the receiver.

[1, 3, 8]. As a result, these signals experience a random but bounded
delay on the bus and could arrive at any time during a certain win-
dow. For example, the HyperTransport specification assumes an un-
certainty interval of one cycle even for very short buses [3]. Clearly,
this is a violation of condition 2.

Figure 2 illustrates how uncertainty in the arrival time of the
transmitter clock can give rise to nondeterminism at the receiver.
The receiver may see the rising edge of the transmitter clock ar-
rive anywhere in the hatched interval. If the receiver processes the
message on the first rising edge of the core clock after arrival, then
the processing time is nondeterministic because it depends on the
arrival time.

Deterministic

���������������
���������������
���������������

���������������
���������������
���������������

Arrival

Transmitter
Clock

Receiver 
Core Clock Time

ProcessingNondeterministic
Processing

Figure 2. Nondeterministic and deterministic processing.

3. Ensuring Cycle Determinism in Buses

To make bus transfers fully cycle-deterministic, we propose to
delay theprocessingof a message at the receiver until the last pos-
sible core clock cycle at which the message could have arrived. The
correct processing time is shown in Figure 2 as “deterministic pro-
cessing”. The cost of this approach is a small increase in latency for
some messages.

Our scheme works in any system where the ratio of the frequen-
cies in the transmitterT and receiverR is constant, although the
relative phase of the clocks may change with time (within bounds)
due to physical and electrical effects. However, for simplicity, this
paper will assume thatT andR operate at the same frequency.

CADRE adds adomain-clockcounter — an up-counter driven
by the local clock signal — to both the transmitter and the receiver.
At periodic global machine checkpoints (once per second), a broad-
cast signal resets all domain-clock counters. At any time, the differ-
ence between the transmitter’s and receiver’s domain-clock counts
is bounded by[p, q]. Additionally, the transmission delay of a mes-
sage on the bus (measured in domain-clock counts) is bounded by
[d1, d2]. The constantsd1, d2, p, andq are known at design time.
As a result, if the transmitter sends a message at countxT of its



domain-clock counter, the message willarrive at the receiver at
countyR of the receiver’s domain-clock counter, as given by:

yR = xT + [d1 + p, d2 + q] = xT + [θ1, θ2] (1)

We callθ2 − θ1 theUncertainty Interval.
Our scheme to enforce bus determinism is detailed in [7]. It

requires that the transmitter include in every message a short tag
ρ (typically 1 or 2 bits) that allows the receiver to determine when
the message was sent (xT ). Then, the receiver simply computes
zR = xT + θ2 and delays theprocessingof the message untilzR,
ensuring determinism.

The hardware required is shown in Figure 3. Our scheme adds
a Synchronizermodule to the bus interface of the receiver. This
hardware processes the tagρ arriving with the data, and uses it to
determine at what cyclezR to process the data. Full details are
in [7].

+

+
θ2

=

θ1
ρ

Rz

R
ec

ei
ve

r 
C

or
e

Lookup
Table

Holding Queue

Domain Counter
Overflow

Bus Interface

Data

Circular
Queue

−

−

W CounterMod−

Figure 3. Synchronizer module added to the bus interface of
the receiver.

4. Overall Deterministic System

To design a CADRE system, we build on the checkpointing and
logging mechanisms from ReVive [6] or SafetyNet [10]. The idea
is as follows. Periodically — say, once per second — processors
write back their caches to memory and invalidate caches and TLBs.
They then save their registers and completely re-initialize all inter-
nal state-holding elements to a known state. As execution proceeds
after the checkpoint, when a main-memory location is about to be
over-written for the first time since the checkpoint, the old value of
that location is saved in a Memory Log. This is done in hardware by
the memory controller. As discussed in [6, 10], this support enables
memory state rollback.

To make each CPU deterministic, we introduce theDETRSTin-
struction, which initializes all the state elements in the processor.
DETRSTis executed after every checkpoint. Moreover, each CPU
is augmented with a CPU Log that records a variety of events, such
as (i) clock duty cycle modulation, (ii) voltage-frequency scaling,
and (iii) nondeterministic interrupts and exceptions generated in-
side the processor chip. Examples of the latter are thermal emer-
gencies and ECC failures due to soft errors. During re-execution,
events in the log are replayed to reproduce the events in the original
execution.

To make the memory deterministic, we make two changes to the
memory controller. First, the controller makes memory refresh de-
terministic by resetting the refresh logic at each checkpoint. In this
case, if all of the inputs to the memory controller are determinis-
tic, the refresh logic will generate deterministic outputs. As long as
the checkpoint interval is long enough to allow at least one refresh
operation to complete per memory location, the DRAM will not
lose data. Moreover, to circumvent nondeterminism from memory
scrubbing, the controller includes in the checkpoint the register that
indexes the currently scrubbed line. When restoring the checkpoint,
the register is restored, enabling scrubbing to resume from exactly
where it was in the original execution.

Since I/O devices are inherently nondeterministic, CADRE uses
a logging-based solution. Specifically, CADRE places a buffering
module in the memory controller called the Input Log. The Input
Log records all the messages arriving from the I/O devices and the
interrupts that the I/O devices deliver. When replaying an execu-
tion, the I/O devices can simply be suspended by gating their clock
and disconnecting them temporarily from the data bus. The Input
Log will reproduce all of the signals that the I/O devices generated
during the original execution.

Finally, to enforce determinism in source-synchronous buses,
we use the module shown in Figure 3 at the receiver side of each
bus. If a bus is bidirectional, CADRE places one such module at
each end of the bus.

5. Feasibility

Possible concerns about CADRE include the added chip area,
design complexity, storage overhead, and performance overhead.
The area overhead of the added CADRE logic is very small; the
bus synchronizers comprise fewer than a thousand gates each, and
the memory and IO log controllers are also tiny. Only the Input
Log, which is implemented in SRAM, consumes significant space.
As for complexity, we feel that any additional design effort for a
CADRE system is more than offset by the improvements in verifi-
cation efficiency that cycle-accurate determinism provides.

The storage overhead is composed of the Input Log, CPU Logs,
and the ReVive/SafetyNet Memory Log. The latter is estimated to
be around 50 MB/s per processor in [11]. Although the size of the
Input Log varies with the application, we found it to be quite low
for a set of workloads that include SPECint, SPECfp, SPEComp,
SPECjbb, and SPECweb. While some applications may require
up to 100 MB/s during periods of high activity, no application ex-
ceeded 1 MB/s of input log bandwidth in the steady state. Finally,
the storage cost of the CPU Log is negligible since frequency scal-
ing and thermal events are rare in current processors.

The main contributor to performance overhead is the increased
memory latency introduced by the bus synchronizers that make the
path from the processor to memory deterministic. Other costs, such
as flushing caches at checkpoints, are negligible with checkpoint
intervals of one second or longer. So, assume that the memory con-
troller is on a different chip than the processor and that the intercon-
nection of the processor, memory controller, and memory modules
is through HyperTransport links. Given current technology [3], the
bus synchronizer on each link will add one cycle to each message
in the worst case. We therefore consider a worst case of four addi-
tional bus cycles for each memory access. Our simulation results



show that the resulting slowdowns on SPECjbb, SPEComp, SPEC-
cpu, and SPECweb are all less than 1%.

To summarize, extending a four-way CMP server with CADRE
hardware supporting a one second checkpoint interval would have
a storage cost of about 200 MB of DRAM plus a few MB of SRAM
(for the Input Log), a performance overhead of 1%, and a small area
cost. For that price, we obtain the ability to “rewind” execution to a
checkpoint one second in the past and re-execute deterministically
cycle-for-cycle.

6. Related Work

The state of the art in deterministic replay for hardware debug-
ging is Golan, a hardware testbed used to debug the Pentium-M
processor [9]. Golan attaches a logic analyzer to the pins of the
processor chip. Every input signal arriving at the pins is logged.
This includes data to satisfy cache misses. Like CADRE, Golan
takes a periodic checkpoint, which involves invalidating caches and
TLBs, saving the processor registers, and resetting the processor
state. Upon detection of a failure, Golan restores a checkpoint and
restarts execution while replaying the logic analyzer log.

A shortcoming of the Golan approach is that the checkpoint
interval (and therefore replay distance) is much shorter and stor-
age overhead is much greater than in CADRE. Additionally, the
probes that attach the logic analyzer to the processor pins present
a difficult electrical design problem because the pins cycle at high
frequency and no nondeterminism in the connection can be toler-
ated. Although Golan was highly successful in speeding Pentium-
M bringup, it is not suitable for field deployment.

7. Conclusions

We have proposed that hardware that enforces cycle-accurate
determinism be included in commodity computer systems to ease
verification and testing, and for other purposes. We have explained
what the main sources of nondeterminism are and how they can
be circumvented. Finally, we have argued that the area, complexity,
storage, and performance cost of the required hardware is minimal.

References
[1] W. J. Dally and J. W. Poulton.Digital Systems Engineering. Cam-

bridge University Press, 1998.
[2] D. Bernick et al. NonStop advanced architecture. InDSN, pages 12–

21, 2005.
[3] HyperTransport Technology Consortium. HyperTransport I/O link

specification revision 2.00b, 2005.
[4] D. D. Josephson, S. Poehhnan, and V. Govan. Debug methodology for

the McKinley processor. InITC, pages 451–460, 2001.
[5] K. Mohanram and N. A. Touba. Eliminating non-determinism dur-

ing test of high-speed source synchronous differential buses. InVTS,
pages 121–127, 2003.

[6] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-effective ar-
chitectural support for rollback recovery in shared-memory multipro-
cessors. InISCA, pages 111–122, 2002.

[7] S. R. Sarangi, B. Greskamp, and J. Torrellas. CADRE: Cycle-accurate
deterministic replay for hardware debugging. InDSN, 2006.

[8] L. Sartori and B. G. West. The path to one-picosecond accuracy. In
ITC, pages 619–627, 2000.

[9] I. Silas et al. System level validation of the Intel Pentium-M processor.
Intel Technology Journal, 7(2), May 2003.

[10] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet: Improving
the availability of shared memory multiprocessors with global check-
point/recovery. InISCA, pages 123–134, 2002.

[11] M. Xu, R. Bod́ık, and M. D. Hill. A “Flight Data Recorder” for en-
abling full-system multiprocessor deterministic replay. InISCA, 2003.


